Modelling vaccine escape

Maria A. Gutierrez (mag84) and Julia R. Gog
Dept. of Applied Mathematics and Theoretical Physics (DAMTP)

$$
j i j
$$

$$
{ }_{i}^{i} j_{i}^{j} j_{j i}^{i}
$$

$$
i_{i}^{i} i_{i j}^{i}
$$

$$
\begin{array}{cc}
i & i \\
i & i j \\
i
\end{array}
$$

$$
i_{i} j_{i}
$$

$$
\mathbb{P}\left(\begin{array}{ll}
i & i \\
i & i
\end{array}\right)
$$

Hartfield et al. 2014, Gog et al. 2021,
Rella et al. 2021, Saad-Roy et al. 2021

$$
i_{8}^{i j} ?
$$

$$
\mathbb{P}\left(\begin{array}{ll}
i & i \\
i & i
\end{array}\right)=\mathbf{i}
$$

$$
\mathbb{P}\left(\begin{array}{ll}
i & i \\
i & i
\end{array}\right)=\mathbf{i}+\theta_{E} \boldsymbol{i}
$$

$$
\begin{aligned}
& \mathbb{P}\binom{i}{i}=i+\theta_{E} \\
& P(t)=I_{U}(t)+\theta_{E} I_{V}(t)
\end{aligned}
$$

Unvaccinated fraction $(1-c)$
Vaccinated fraction c

$$
\begin{gathered}
\dot{S}_{U}=-S_{U} \lambda(t) \\
\dot{I}_{U}=S_{U \lambda}(t)-I_{U}
\end{gathered}
$$

$$
\dot{S}_{V}=-S_{v} \lambda(t)
$$

$$
\dot{I}_{v}=S_{v} \lambda(t)-I_{V}
$$

$$
\lambda=R_{0}\left(I_{U}+\theta_{l} I_{V}\right)
$$

$$
S_{U}(0)=(1-c)
$$

$$
S_{V}(0)=c \theta_{S}
$$

Unvaccinated fraction $(1-c)$
Vaccinated fraction c

$$
\begin{gathered}
\dot{S}_{U}=-S_{U} \lambda(t) \\
\dot{I}_{U}=S_{U \lambda}(t)-I_{U}
\end{gathered}
$$

$$
\dot{S}_{V}=-S_{v} \lambda(t)
$$

$$
\dot{I}_{v}=S_{v} \lambda(t)-I_{v}
$$

$$
\lambda=R_{0}\left(I_{U}+\theta_{l} I_{V}\right)
$$

$$
S_{U}(0)=(1-c)
$$

$$
S_{V}(0)=c \theta_{S}
$$

$\forall t$

$$
(1-c)^{-1}\left(S_{U}, I_{U}, R_{V}\right)=\left(c \theta_{S}\right)^{-1}\left(S_{V}, I_{V}, R_{V}\right)
$$

$$
\begin{gathered}
(S, I):=(1-c)^{-1}\left(S_{U}, I_{U}\right)=\left(c \theta_{S}\right)^{-1}\left(S_{V}, I_{V}\right) \\
R_{e}=R_{0}\left(1-c\left(1-\theta_{S} \theta_{I}\right)\right)
\end{gathered}
$$

$$
S(\infty)=-W\left(-R_{e} e^{-R_{e}}\right) / R_{e}
$$

$$
\begin{gathered}
(S, I):=(1-c)^{-1}\left(S_{U}, I_{U}\right)=\left(c \theta_{S}\right)^{-1}\left(S_{V}, I_{V}\right) \\
R_{e}=R_{0}\left(1-c\left(1-\theta_{S} \theta_{I}\right)\right) \\
S(\infty)=-W\left(-R_{e} e^{-R_{e}}\right) / R_{e} \\
\int_{0}^{\infty} P(t) d t=\int_{0}^{\infty}\left(I_{U}+\theta_{E} I_{V}\right) d t \\
P=\left(1-c+\theta_{S} \theta_{E} C\right)\left(1+\frac{1}{R_{e}} W\left(-R_{e} e^{-R_{e}}\right)\right)
\end{gathered}
$$

$P(c) / P(0)$: escape pressure

θ_{E}

2

0
no vaccination herd immunity
c : vaccination coverage
$P(c) / P(0)$: escape pressure

$P(c) / P(0)$: escape pressure

vaccination coverage
$P(c) / P(0)$: escape pressure

vaccination coverage

$$
\theta_{E}
$$

$$
888
$$

$$
\mathbb{P}\left(\begin{array}{cc}
\mathbf{i} ; \mathbf{i} & \mathbf{i}
\end{array}\right)=\mathbf{i}+\theta_{E} \boldsymbol{i}
$$

$$
\begin{aligned}
& P=\left[1-c+\theta_{E}\left(\frac{\theta_{S}^{\prime}\left(1-R_{0}^{-1}\right)+c\left(\theta_{S}-\theta_{S}^{\prime}\right)}{1-\theta_{S}^{\prime}}\right)\right]\left(1+\frac{W\left[-r e^{-r}\right]}{r}\right) \\
& r=\left(R_{e}-\theta_{S}^{\prime}\right) /\left(1-\theta_{S}^{\prime}\right)
\end{aligned}
$$

vaccination coverage

vaccination coverage

vaccination coverage

$$
\theta_{E}, \theta_{S}, \theta_{S}^{\prime}
$$

$$
0^{8} \rightarrow 0
$$

$$
\mathbb{P}\left(\begin{array}{cc}
\mathbf{i} ; \mathbf{i} & \mathbf{i}
\end{array}\right)=\mathbf{i}+\theta_{E} \boldsymbol{i}
$$

$$
\mathbb{P}\left(\begin{array}{cc}
\mathbf{j} \\
\mathbf{i} & \boldsymbol{i} \\
\mathbf{i}
\end{array}\right)=\mathbf{i}+\theta_{E} \boldsymbol{i}+P \boldsymbol{i}+\theta_{E} \mathbb{i}
$$

$P\left(c_{1}, c_{2}\right)$

θ_{E}, D

$$
88!\theta_{\theta_{E}}
$$

$$
\mathrm{i}_{\mathrm{i}} \mathrm{i} \mathrm{j} \mathrm{ij}^{i}
$$

$$
\begin{array}{ccc}
i & i & i \\
i & i \\
\hline
\end{array}
$$

$$
i_{i j}^{i o}
$$

$$
\mathbb{P}\left(\begin{array}{cc}
i & i
\end{array}\right) \neq 1-\frac{1}{R(t)}
$$

$\begin{array}{cc}i \\ i & i \\ i j \\ i\end{array}$

$$
i_{i}^{i} i_{i j}^{i}
$$

$$
\mathrm{j}_{\mathrm{i}} \mathrm{i} \mathrm{jio}^{\circ}
$$

$$
\begin{aligned}
& \mathbb{P}\left(\begin{array}{ll}
i & i \\
i & i i^{i}
\end{array}\right)=
\end{aligned}
$$

