Vaccine Escape

Maria A. Gutierrez and Julia R. Gog

University of Cambridge

Upcoming talk:

SMB MathEpiOnco 2024 (19/02 2:45pm-3:00pm EST).

io ioisi

$$
\begin{gathered}
i \\
i \\
i \\
i
\end{gathered}
$$

i	i	8
i	8	0

$$
i_{i} i_{i}
$$

$$
\mathbb{P}\left(\begin{array}{ll}
i & i \\
i & i
\end{array}\right)
$$

Escape pressure

infections
in vaccinated

infections
in unvaccinated

Escape pressure

infections
in vaccinated

$$
P(t)=I_{U}(t)+\theta_{E} I_{V}(t)
$$

Unvaccinated fraction $(1-c)$
Vaccinated fraction c

$$
\begin{gathered}
\dot{S}_{U}=-S_{U} \lambda(t) \\
\dot{I}_{U}=S_{U \lambda}(t)-I_{U}
\end{gathered}
$$

$$
\dot{S}_{V}=-S_{v} \lambda(t)
$$

$$
\dot{I}_{v}=S_{v} \lambda(t)-I_{V}
$$

$$
\lambda=R_{0}\left(I_{U}+\theta_{l} I_{V}\right)
$$

$$
S_{U}(0)=(1-c)
$$

$$
S_{V}(0)=c \theta_{S}
$$

Unvaccinated fraction $(1-c)$
Vaccinated fraction c

$$
\begin{gathered}
\dot{S}_{U}=-S_{U} \lambda(t) \\
\dot{I}_{U}=S_{U \lambda}(t)-I_{U}
\end{gathered}
$$

$$
\dot{S}_{V}=-S_{v} \lambda(t)
$$

$$
\dot{I}_{v}=S_{v} \lambda(t)-I_{v}
$$

$$
\lambda=R_{0}\left(I_{U}+\theta_{l} I_{V}\right)
$$

$$
S_{U}(0)=(1-c)
$$

$$
S_{V}(0)=c \theta_{S}
$$

$\forall t$

$$
(1-c)^{-1}\left(S_{U}, I_{U}, R_{V}\right)=\left(c \theta_{S}\right)^{-1}\left(S_{V}, I_{V}, R_{V}\right)
$$

$$
\begin{gathered}
(S, I):=(1-c)^{-1}\left(S_{U}, I_{U}\right)=\left(c \theta_{S}\right)^{-1}\left(S_{V}, I_{V}\right) \\
R_{e}=R_{0}\left(1-c\left(1-\theta_{S} \theta_{I}\right)\right)
\end{gathered}
$$

$$
S(\infty)=-W\left(-R_{e} e^{-R_{e}}\right) / R_{e}(\text { Lambert W-function })
$$

$(S, I):=(1-c)^{-1}\left(S_{U}, I_{U}\right)=\left(c \theta_{S}\right)^{-1}\left(S_{V}, I_{V}\right)$

$$
R_{e}=R_{0}\left(1-c\left(1-\theta_{S} \theta_{l}\right)\right)
$$

$S(\infty)=-W\left(-R_{e} e^{-R_{e}}\right) / R_{e}$ (Lambert W-function)
$\int_{0}^{\infty} P(t) d t=\int_{0}^{\infty}\left(I_{U}+\theta_{E} I_{V}\right) d t$
Cumulative escape pressure

$$
P=\left(1-c+\theta_{S} \theta_{E} C\right)\left(1+\frac{1}{R_{e}} W\left(-R_{e} e^{-R_{e}}\right)\right)
$$

$$
888
$$

$$
\mathbb{P}\left(\mathbf{i}_{i}^{i} \quad i_{i} \boldsymbol{i}\right)=\boldsymbol{i}+\theta_{E} \boldsymbol{i}
$$

$$
\begin{array}{ll}
\dot{S}_{U}^{i}=-S_{U}^{i} \lambda(t) & \dot{S}_{V}^{i}=-S_{V}^{i} \lambda(t) \\
\dot{S}_{U}^{i j}=-S_{U}^{i j} \lambda(t)+\theta_{S}^{\prime} l_{U} & \dot{S}_{V}^{i j}=-S_{V}^{i j} \lambda(t)+\theta_{S}^{\prime} l_{V}
\end{array}
$$

$$
\dot{I}_{U}=\left(S_{U}^{i}+S_{U}^{i i}\right) \lambda(t)-I_{U} \quad \dot{I}_{V}=\left(S_{V}^{i}+S_{V}^{i i}\right) \lambda(t)-I_{V}
$$

$$
S_{U}^{i}(0)=1-c
$$

$$
s_{U}^{i i}(0)=c \theta_{s}
$$

$$
\left(S^{i}, S^{i i}, I\right)=(1-c)^{-1}\left(S_{U}^{i}, S_{U}^{i i}, I_{U}\right)=\left(c \theta_{S}\right)^{-1}\left(S_{V}^{i}, S_{V}^{i i}, I_{V}\right)
$$

$$
\left(S^{i}, S^{i i}, I\right)=(1-c)^{-1}\left(S_{U}^{i}, S_{U}^{i i}, I_{U}\right)=\left(c \theta_{S}\right)^{-1}\left(S_{V}^{i}, S_{V}^{i j}, I_{V}\right)
$$

$$
\begin{gathered}
\frac{d S^{i i}}{d S^{i}}=\frac{\dot{S}^{i i}}{\dot{S}^{i}}=\ldots \Longrightarrow \frac{d}{d S^{i}} \frac{S^{i i}}{S^{i}}=\cdots \Longrightarrow \\
\frac{S^{i i}}{S^{i}}=\frac{\theta_{S}^{\prime}}{R_{e}}\left(1 / S^{i}-1\right)
\end{gathered}
$$

$$
\begin{aligned}
\frac{d I}{d S^{i}} & =\frac{\dot{I}}{\dot{S}^{i}}=\cdots \Longrightarrow \\
I & =\left(1-\frac{\theta_{S}^{\prime}}{R_{e}}\right)\left(1-S^{i}\right)+\frac{1-\theta_{S}^{\prime}}{R_{e}} \log S^{i}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d I}{d S^{i}} & =\frac{\dot{I}}{\dot{S}^{i}}=\cdots \Longrightarrow \\
\quad I & =\left(1-\frac{\theta_{S}^{\prime}}{R_{e}}\right)\left(1-S^{i}\right)+\frac{1-\theta_{S}^{\prime}}{R_{e}} \log S^{i} \\
S_{\infty}^{i} & =1-\frac{1-\theta_{S}^{\prime}}{R_{e}-\theta_{S}^{\prime}} \log \frac{1}{S_{\infty}^{i}}=-\frac{1}{r} W\left[-r e^{-r}\right] \\
r & =\left(R_{e}-\theta_{S}^{\prime}\right) /\left(1-\theta_{S}^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{\infty} R_{e} S^{i i} I d t & =\int_{S_{\infty}^{\prime}}^{1} \frac{S^{i i}}{S^{i}} d S^{i} \\
& =\cdots=\frac{\theta_{S}^{\prime}}{R_{e}}(r-1)\left(1+\frac{1}{r} W\left[-r e^{-r}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\infty} R_{e} S^{i i} l d t=\int_{S_{\infty}^{\prime}}^{1} \frac{S^{i i}}{S^{i}} d S^{i} \\
&=\cdots=\frac{\theta_{S}^{\prime}}{R_{e}}(r-1)\left(1+\frac{1}{r} W\left[-r e^{-r}\right]\right) \\
& P=\left[1-c+\theta_{E}\left(\frac{\theta_{S}^{\prime}\left(1-R_{0}^{-1}\right)+c\left(\theta_{S}-\theta_{S}^{\prime}\right)}{1-\theta_{S}^{\prime}}\right)\right]\left(1+\frac{W\left[-r e^{-r}\right]}{r}\right)
\end{aligned}
$$

Summary

Escape pressure

 depends on the vaccination level: unimodal or decreasing... determined by immunity
parameters and especially θ_{E} !
\Longrightarrow importance of heterogenous contributions to escape

i	i	0
0	80	

$$
\begin{array}{ccc}
1 & i & 8 i \\
\hline
\end{array}
$$

$$
\mathbb{P}\left(\begin{array}{ll}
0 & 0 \\
8 & i \\
80
\end{array}\right)
$$

$$
\mathbb{P}\left(\begin{array}{cc}
0_{i j} & i_{0} \\
0
\end{array}\right) \neq 1-\frac{1}{R(t)}
$$

$$
\mathrm{i}_{\mathrm{i}} \mathrm{i}
$$

$$
\begin{array}{ccc}
\mathrm{i}_{8} \mathrm{i} & \mathrm{i} & \mathrm{i} \\
\hline
\end{array}
$$

$$
i_{i}^{i} \quad j i i^{i}
$$

$$
\mathrm{i}_{\mathrm{i}} \mathrm{i} \mathrm{jiO}_{8}^{0}
$$

$\mathbb{P}\left(\begin{array}{ll}i & i \\ i & i \\ i 0\end{array}\right)=$

